How to Polar-Align a Telescope

For a telescope to accurately track the sky motion of any celestial object like planets, stars, and deep-sky objects, precise polar alignment is needed. This is true for any equatorial telescope, both for manual and electronic types. Without proper polar alignment, objects will always drift out of view making it impossible to perform lengthy and detailed observations. In astrophotography, poor polar alignment would mean sad-looking star trails in captured images.

polar_scope_polaris_big dipper
Polar alignment achieved with the help of a polar scope

To learn how to properly polar-align your telescope and achieve accurate tracking of celestial objects, click here.

For featured photos, click here.
For tutorials on how to get started with astrophotography, click here.
For DIY astronomy projects useful for astrophotography, click here.
To subscribe to this site, click here.

© Anthony Urbano (Manila, Philippines)

Advertisements

DIY Autoguider: Home-Built Autoguider Project

About a year ago (November 2011), I started constructing a home-built autoguider, a setup astrophotographers use in imaging galaxies, nebula, and many other deep-space stuff. The setup is no different from what is used by observatories world wide, except that this one was built entirely from scratch. Feel free to browse the details of the project here.

A home-built autoguider setup showing the key components: (1) imaging telescope, (2) imaging camera, (3) guidescope, (4) guide camera, (5) tracking mount, and (6) a computer.

DIY Autoguider (Part 4: Autoguiding and Polar Alignment)

This part of the DIY guide focuses on the actual guiding operation and the drift-alignment method for precise polar alignment. We begin by first assembling the telescope along with the guidescope. We also attach the imaging and the guiding cameras and connect all the necessary cables leading to and from the computer.

Screenshot during actual guiding operation

Read more.